

FedGraph for Health

Carl Yang@Emory

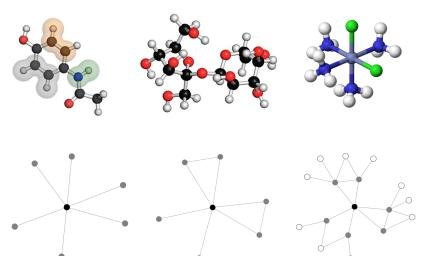
FedGraph: 3 Settings

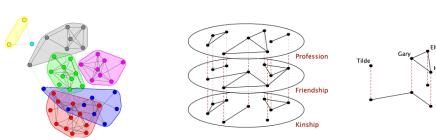
- Graph-level FL
 - Each pharmaceutical research institution holds a set of graphs
 - E.g., Drug discovery, molecular trial, protein synthesis, brain network analysis
- Subgraph-level FL
 - Each institute holds a subset of a global graph
 - E.g., Knowledge graph completion, diagnosis prediction
- Link-level FL
 - Each client holds a set of links among the same set of nodes
 - E.g., Social network analysis, recommendation

EMORY UNIVERSITY

Need: jointly train a powerful and generic model

Reality: Privacy concerns, regulatory restrictions, commercial competitions

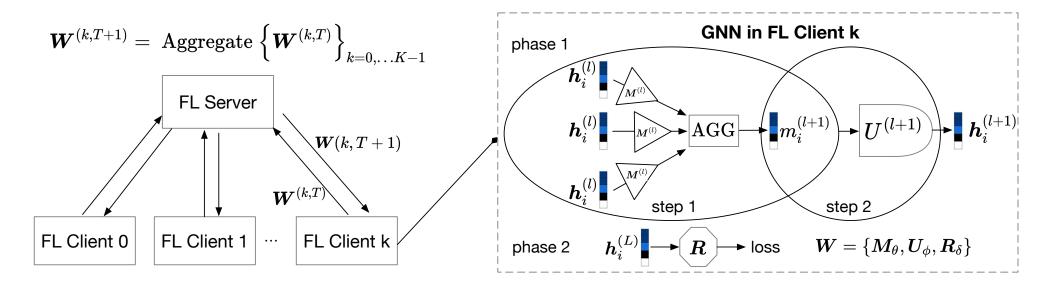




FedGraph: 3 Challenges

- Utility: Approximating centralized graph learning
 - Graph-level: non-iid structures
 - Subgraph-level: incomplete neighborhoods
 - Link-level: heterogeous links
- Efficiency: Reducing graph computation overhead
 - Graph-level: asynchronous graph model aggregation
 - Subgraph-level: multimodal communication compression
 - Link-level: partial link model aggregation
- Privacy: Guaranteeing cross-client graph privacy
 - Interactive DP: Ensuring DP by leveraging aggregation/compression
 - Non-interactive DP: Ensuring DP by private graph generation

FedGraph: Benchmark (ICLR/MLSys'21)

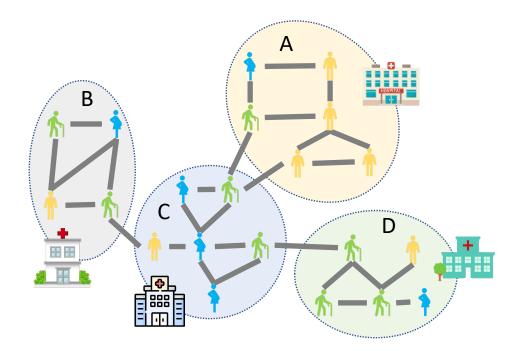


- GNN for graph learning: message passing + readout
- Federated learning: share gradients instead of data
- FedGraphNN: popular methods, 36 open datasets, 1 distributed system

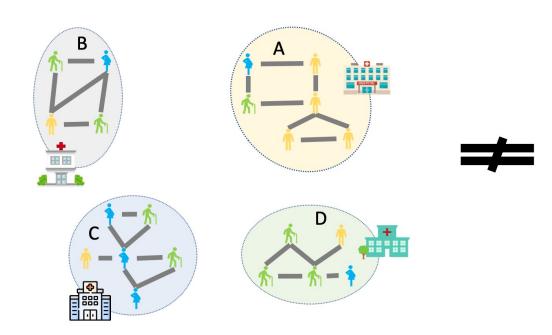
FedGraph for Health

FedGraph Example: Utility of Subgraph-Level FL

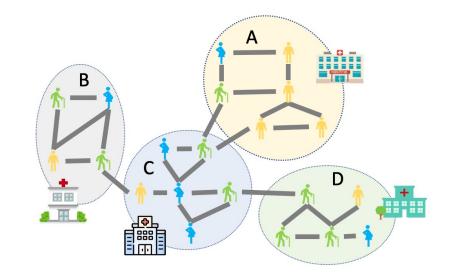
- Hospitals capture local subgraphs of patient interactions
- City-level disease control needs unbiased global predictions
- Restrictions on direcy data transmission/integration



Main Challenge

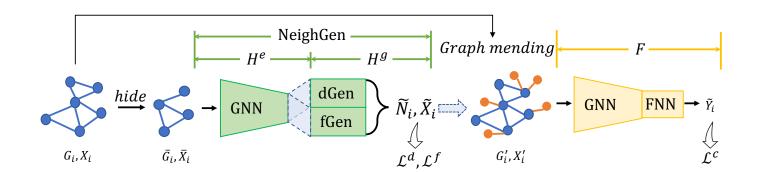


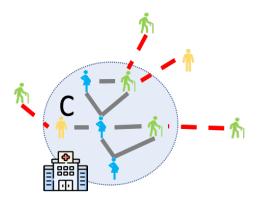
How to handle crosssubgraph missing links?



Our Solution: FedSage + NeighGen [NeurIPS'21 Spotlight]

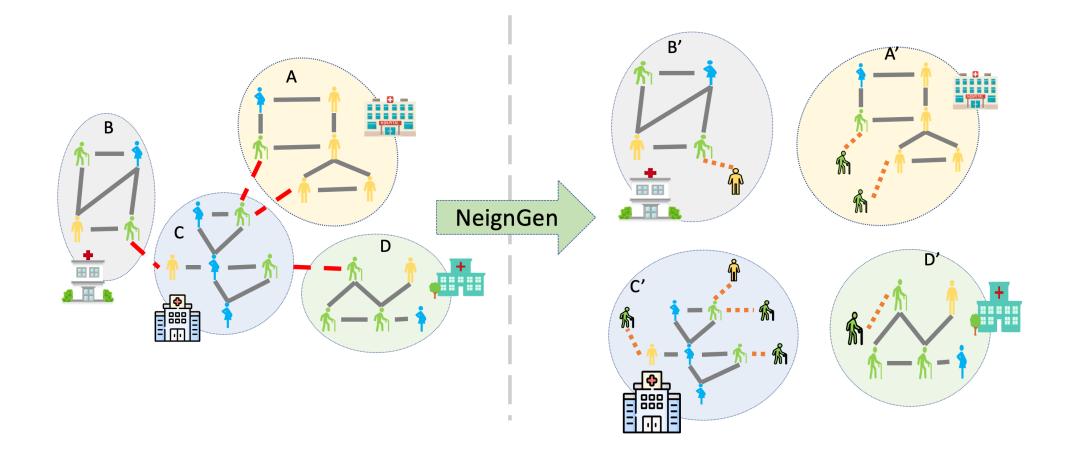
• NeighGen: Missing neighbor generator



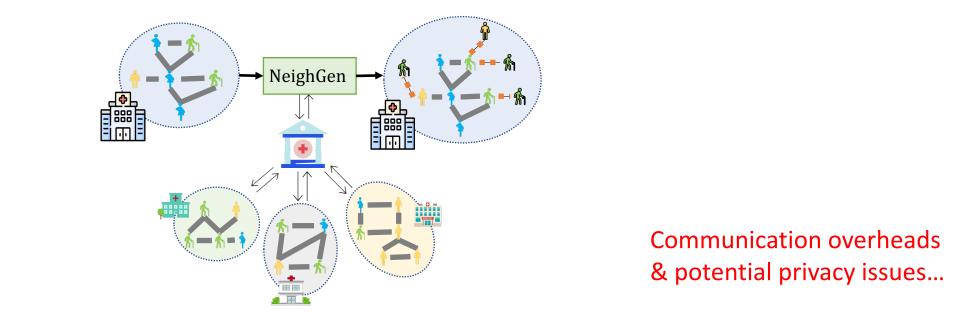


$$\widetilde{N}_{i} = \{ \widetilde{n}_{v} | \widetilde{n}_{v} \in \mathbb{N}, v \in V_{i} \}$$
$$\widetilde{X}_{i} = \{ \widetilde{x}_{v} | \widetilde{x}_{v} \in \mathbb{R}^{\widetilde{n}_{v} \times x}, \widetilde{n}_{v} \in \widetilde{N}_{i}, v \in V_{i} \}$$

NeighGen: Ideal Effect



NeighGen: Federated Training



$$\mathcal{L}_{i}^{f} = \frac{1}{|\bar{V}_{i}|} \sum_{v \in \bar{V}_{i}} \sum_{p \in [\tilde{n}_{v}]} \left(\min_{u \in \mathcal{N}_{G_{i}}(v) \cap V_{i}^{h}} (||\tilde{x}_{v}^{p} - x_{u}||_{2}^{2}) + \alpha \sum_{j \in [M]/i} \min_{u \in V_{j}} (||H_{i}^{g}(z_{v})^{p} - x_{u}||_{2}^{2}) \right)$$

Experimental Results

Baselines:

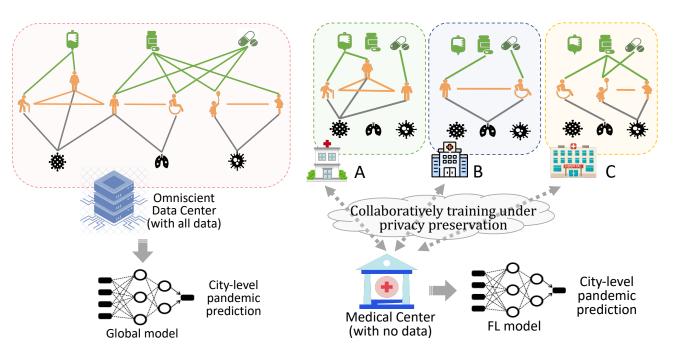
GlobSage: the GraphSage model trained on the original global graph without missing links (upper bound)

LocSage: one GraphSage model trained solely on each subgraph

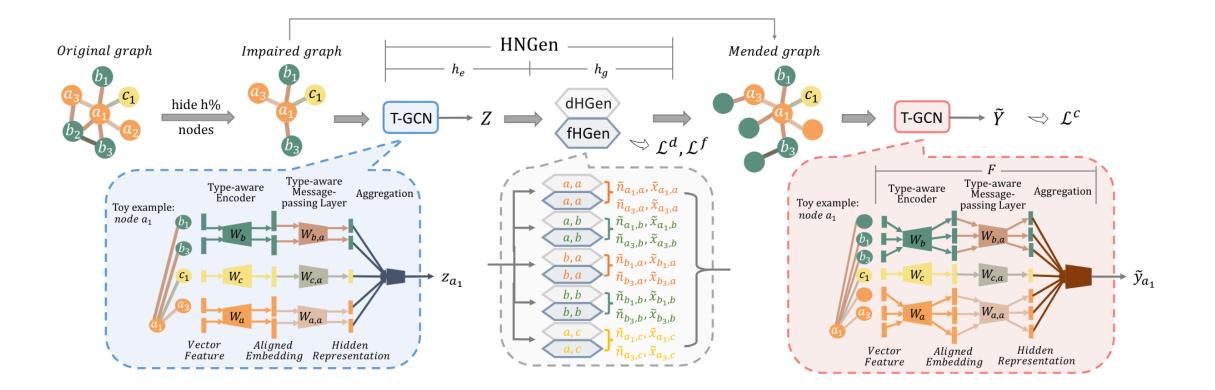
		Cora		Citesser				
Model	M=3	M=5	M=10	M=3	M=5	M=10		
LocSage	0.5762	0.4431	0.2798	0.6789	0.5612	0.4240		
-	(± 0.0302)	(± 0.0847)	(± 0.0080)	(± 0.054)	(± 0.086)	(± 0.0859)		
LocSage+	0.5644	0.5644 0.4533 0.2851		0.6848	0.5676	0.4323		
	(± 0.0219)	(± 0.047)	(± 0.0080)	(± 0.0517)	(± 0.0714)	(± 0.0715)		
FedSage	0.8656	0.8645	0.8626	0.7241	0.7226	0.7158		
	(± 0.0043)	(± 0.0050)	(± 0.0103)	(± 0.0022)	$\pm 0.0066)$	(± 0.0053)		
FedSage+	0.8686	0.8648	0.8632	0.7454	0.7440	0.7392		
	(± 0.0054)	(± 0.0051)	(± 0.0034)	(± 0.0038)	(± 0.0025)	(± 0.0041)		
GlobSage	0.	8701 (±0.004	2)	0.7561 (±0.0031)				
		PubMed		MSAcademic				
Model	M=3	M=5	M=10	M=3	M=5	M=10		
LocSage	0.8447	0.8039	0.7148	0.8188	0.7426	0.5918		
-	(± 0.0047)	(± 0.0337)	(± 0.0951)	(± 0.0331)	(± 0.0790)	(± 0.1005)		
LocSage+	0.8481	0.8046	0.7039	0.8393	0.7480	0.5927		
	(± 0.0041)	(± 0.0318)	(± 0.0925)	(± 0.0330)	(± 0.0810)	(± 0.1094)		
FedSage	0.8708	0.8696	0.8692	0.9327	0.9391	0.9262		
-	(± 0.0014)	(± 0.0035)	(± 0.0010)	(± 0.0005)	(± 0.0007)	(± 0.0009)		
FedSage+	0.8775	0.8755	0.8749	0.9359	0.9414	0.9314		
-	(± 0.0012)	(± 0.0047)	(± 0.0013)	(± 0.0005)	(± 0.0006)	(± 0.0009)		
GlobSage	0.	8776(±0.001)	1)	0.9681(±0.0006)				

Extension to Heterogeneous Graphs

- Heterogeneous privacy requirements
- How to model heterogeneous subgraphs?
 - Expressiveness of compositional type-aware GCN
 - Generalization bound with weighted FedAvG
- How to handle incomplete neighborhoods?
 - Approximation power of typeaware NeighGen
 - Generalization bound

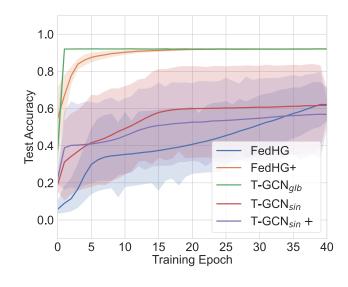


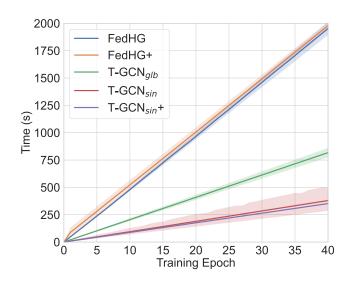
FedHGN Overview



Experimental Results

		DBLP	MIMIC-III		
Model	M=3	M=5	M=10	M=3	M=5
T-GCN _{sin}	0.3336	0.3360	0.3296	0.7002	0.5782
	± 0.0103	± 0.0306	± 0.0525	± 0.3643	± 0.3912
T-GCN _{sin} +	0.3325	0.3432	0.3215	0.7690	0.4743
	± 0.0024	± 0.0402	± 0.0763	± 0.313	± 0.3965
FedHG	0.3336	0.3837	0.3356	0.7401	0.6873
	± 0.0003	± 0.0214	± 0.0019	± 0.2165	± 0.2654
FedHG+	0.3343	0.4322	0.3673	0.8054	0.8492
	± 0.0006	± 0.0142	± 0.0051	± 0.0954	± 0.0565
T-GCN _{glb}	0.6419	0.7680	0.7041	0.9201	0.9206
gio	± 0.0010	± 0.0014	± 0.0011	± 0.0002	± 0.0004



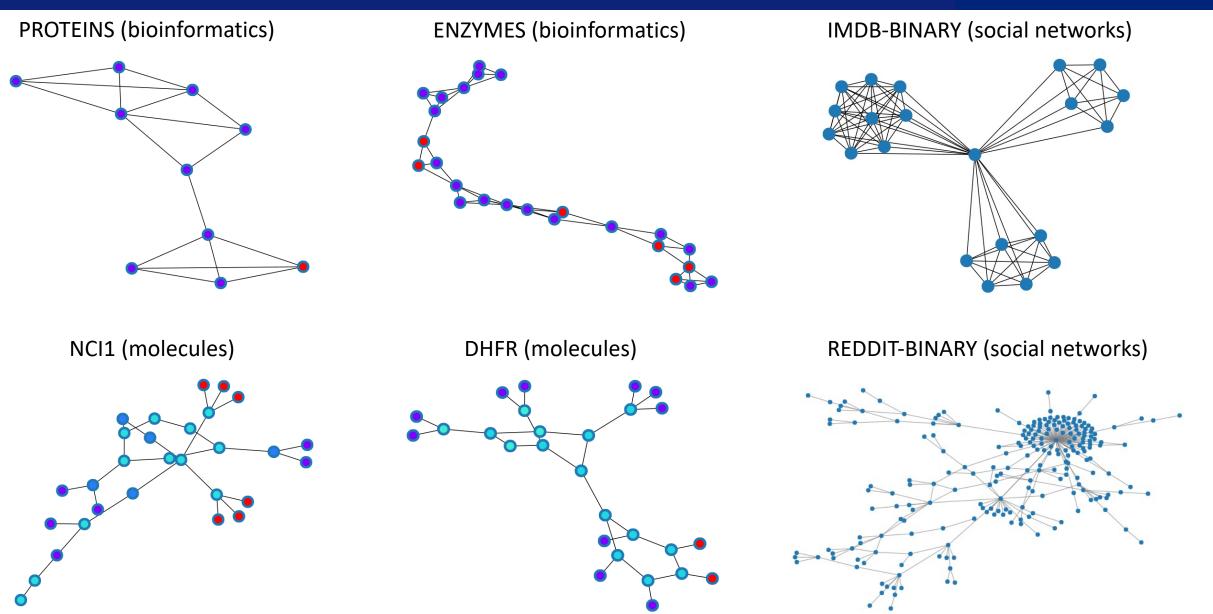


Federated Graph Classification over Non-IID Graphs [NeurIPS'21]

- Real scenarios of graph classification:
 - Molecules → molecular property, activity prediction, synthesis prediction, de novo drug design, etc.
 - Bioinformatics → proteins into enzymes/non-enzymes, enzymes' catelyzed levels
 - Social networks \rightarrow predict the field, venue, genre, etc.
 - Geographic → predict traffic conditions, demands

Can real-world graphs from heterogeneous sources benefit the learning of each other?

FedGraph for Health



FedGraph for Health

Real-World Graphs Share General Properties

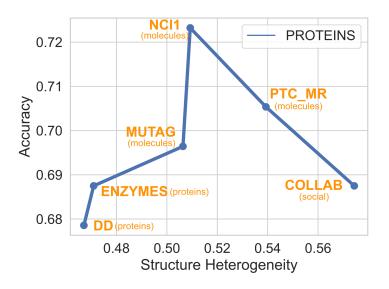
Property	kurtosis of degree distribution		avg. shortest path length		largest component size (LC, %)			clustering coefficient (CC)				
	real	random	p-value	real	random	p-value	real	random	p-value	real	random	p-value
PTC_MR (molecules)	2.1535	2.4424	0.9999	3.36	2.42	~ 0	100	82.68	~ 0	0.0095	0.1201	~ 0
ENZYMES (proteins)	3.0106	2.8243	0.0027	4.44	2.56	~ 0	98.24	97.69	0.2054	0.4516	0.1425	~ 0
IMDB-BINARY (social)	8.9262	2.2791	~ 0	1.48	1.54	~ 0	100	99.93	0.0023	0.9471	0.5187	~ 0
MSRC_21 (superpixel)	3.6959	2.9714	~ 0	4.09	2.81	~ 0	100	99.43	~ 0	0.5147	0.0655	~ 0

- Long-tail degree distribution: ENZYMES, IMDB-BINARY, MSRC_21
- Average shortest path lengths: PTC_MR, ENZYMES, MSRC_21
- Largest component size : PTC_MR, ENZYMES, IMDB-BINARY, MSRC_21
- High clustering coefficient: ENZYMES, IMDB-BINARY, MSRC_21

Motivation for federated graph classification!

Structure & Feature Heterogeneity Varies

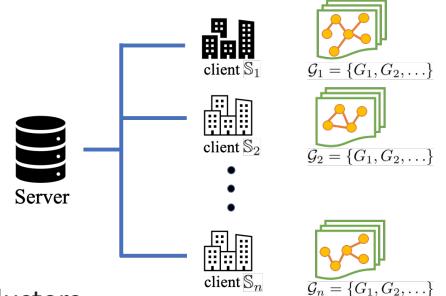
dataset	IMDB-BINARY (social)	COX2 (molecules)	COX2 (molecules) PTC_MR (molecules)	COX2 (molecules) ENZYMES (proteins)	COX2 (molecules) IMDB-BINARY (social)
avg. struc. hetero.	0.4406 (±0.0397)	0.3246 (±0.0145)	$0.3689 (\pm 0.0540)$	$0.5082 (\pm 0.0399)$	$\begin{array}{c} 0.6079\ (\pm 0.0331)\\ 0.1642\ (\pm 0.1006)\end{array}$
avg. feat. hetero.	0.1785 (±0.1226)	0.0427 (±0.0314)	$0.1837 (\pm 0.1065)$	$0.1912 (\pm 0.1000)$	



Careful handling of heterogeneity (non-IIDness) is needed!

GCFL -- Graph Clustered Federated Learning

- Based on CFL: a multi-task learning based framework
- Components of GCFL:
 - One central server, a set of *n* local clients
 - Each client contains a set of graphs
 - \rightarrow Dynamically cluster the clients into a set of clusters
 - \rightarrow Perform cluster-wise FL



GCFL (GIN + CFL)

- GIN: Graph-Isormophism Network
 - State-of-the-art simple graph-level GNN
- Sensitive to both features and structures
 - Theoretical analysis based on the Bourgain theorem
- GIN gradients can capture structure and feature heterogeneity
- The communicated gradients can capture cluster heterogeneity

GCFL (GIN + CFL)

- 1. General FL until the stationary point
- 2. At each communication round *t*, transmit *m* (#clusters) sets of gradients $\{\Delta \theta_i\}_{i=1}^n$; each cluster *C* checks:

$$\delta_{mean} = \|\sum_{i \in [n]} \Delta \theta_i\| < \epsilon_1 \qquad \delta_{max} = \max(\|\Delta \theta_i\|) > \epsilon_2 > 0$$

3. If satisfied, the server calculates a cluster-wise cosine similarity matrix α_k , and perform clustering

Experiments

- Datasets -- 13 datasets from 3 domains, including molecules (7), proteins (3), and social networks (3)
 - Setting 1: single dataset, randomly distributed to a large number of clients
 - Setting 2: multiple datasets from single / multiple domains, one client maintains one dataset
- **3 Baselines**: self-train, FedAvg, FedProx
- Architecture: 3-layer GINs with pre- and post-processing MLPs

Setting 1: Single-Dataset

Table 3: Performance on the single dataset multiple client setting. We present the average accuracy and minimum gain over self-train on all clients, as well as the ratio of clients which get improved.

Dataset (# clients)	NCI	1 (30)		PROTE	INS (10)		IMDB-BINARY (10)		
Accuracy	average	min gain	ratio	average	min gain	ratio	average	min gain	ratio
self-train	$0.6468 (\pm 0.053)$			$0.7213(\pm 0.058)$			$0.7654(\pm 0.057)$		
FedAvg FedProx	$\begin{array}{c} 0.6474 (\pm 0.076) \\ 0.6437 (\pm 0.072) \end{array}$	-0.1333 -0.2400	14/30 16/30	$\begin{array}{c} 0.7490 (\pm 0.034) \\ 0.7556 (\pm 0.036) \end{array}$	-0.0615 -0.0923	6/10 7/10	$\begin{array}{c} 0.7596 (\pm 0.049) \\ 0.7746 (\pm 0.048) \end{array}$	-0.0800 -0.0600	5/10 6/10
GCFL GCFL+	$\begin{array}{c} 0.7326 (\pm 0.052) \\ \textbf{0.7422} (\pm 0.053) \end{array}$	-0.0462 -0.1143	26/30 28 /30	0.7739(±0.043) 0.7776 (±0.037)	-0.0545 -0.0154	8/10 9 /10	$\begin{array}{c} 0.8256 (\pm 0.059) \\ \textbf{0.8299} (\pm 0.052) \end{array}$	0.0182 0.0167	10 /10 10 /10

Setting 2: Multi-Dataset

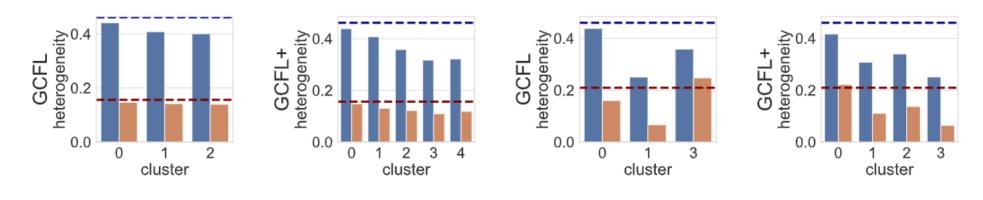
Table 4: Performance on the multiple dataset multiple client setting. Metrics are the same as Table 3

Dataset (# domains)	MOLECULES (1)			BIOCH	іем (2)		MIX (3)		
Accuracy	average	min gain	ratio	average	min gain	ratio	average	min gain	ratio
self-train	0.7543(±0.017)		_	0.7129(±0.016)			0.7001(±0.034)		_
FedAvg FedProx	$\begin{array}{c} 0.7524 (\pm 0.026) \\ 0.7668 (\pm 0.032) \end{array}$	-0.0132 -0.0054	3/7 5/7	$\begin{array}{c} 0.6944 (\pm 0.027) \\ 0.7053 (\pm 0.26) \end{array}$	-0.1467 -0.1000	4/10 5/10	$\begin{array}{c} 0.6886 (\pm 0.023) \\ 0.6897 (\pm 0.026) \end{array}$	-0.1233 -0.1367	5/13 5/13
GCFL GCFL+	0.7661(±0.016) 0.7745(±0.030)	0.0010 0.0010	7 /7 7 /7	0.7172(±0.019) 0.7312(±0.031)	-0.0700 -0.0300	7/10 8 /10	$\begin{array}{c} 0.7056 (\pm 0.019) \\ \textbf{0.7121} (\pm 0.021) \end{array}$	-0.1400 -0.0233	10 /13 10 /13

MOLECULES: 7 molecule datasets from the same domain; BIOCHEM: MOLECULES + 3 protein datasets; MIX: BIOCHEM + 3 social networks

Heterogeneity Analysis on Clusters

• Structure & feature heterogeneity within clusters



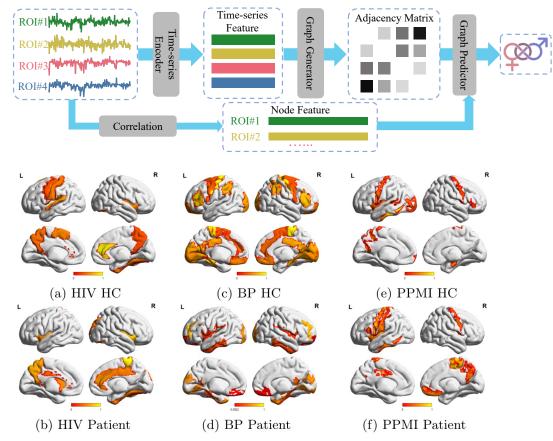
(a) oneDS: PROTEINS (b) oneDS: PROTEINS (c) multiDS: MIX (d) multiDS: MIX

Figure 3: Structure (blue) and feature (red) heterogeneity within clusters found by GCFL and GCFL+. Dashed lines denote the heterogeneity over all clients before clustering.

Blue: structure *Yellow*: feature *Dashed line*: the heterogeneity before clustering

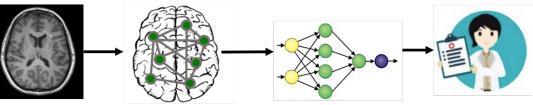
Brain Networks

- FBNetGen (MIDL'22)
 - End-to-end brain network generation + gender prediction + interpretation
- BrainNNExplainer (MICCAl'22)
 - GNNExplainer applied on brain networks for HIV, BP and PPMI
- MBNN (EMBC'22)
 - Multiview-GNN applied on brain networks for HIV, BP and PPMI
- PGB (KDD'22, CHIL'23)
 - Pre-training GNNs for brain network analysis



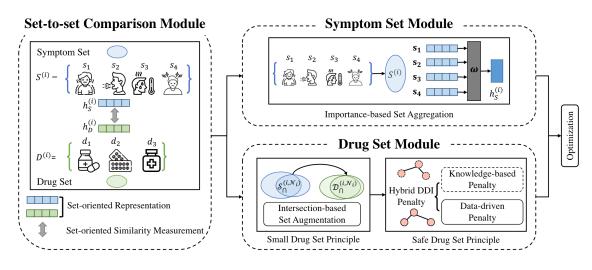
Brain Networks + FedGraph

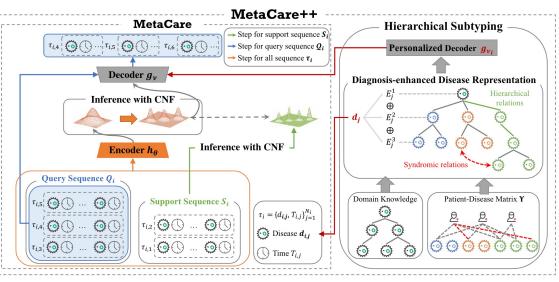
- Motivation: limited data in local studies (amount and access)
- Scenarios
 - Single disease multiple cohorts: e.g., Parkinson's, depression
 - Single cohort multiple diseases:
 e.g., Parkinson's, Alzheimer's; PTSD, depression
- Unique challenges (preliminaries)
 - Node system alignment: e.g., PGB (CHIL'23)
 - Cross task/dataset transferability: e.g., EGI (NeurIPS'21)
 - Self-supervised GNN training: e.g., NWR-GAE (ICLR'22)



EHR Networks

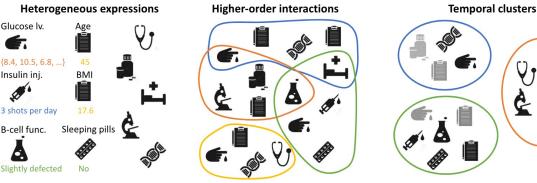
- 4SDrug (KDD'22)
 - Set-to-set (symptom-to-drug) recommendation
 - Important set of symptoms
 - Small and safe set of drugs
- MetaCare (SIGIR'22)
 - Meta-learning for rare diseases and infrequent patients
 - External disease relationships + datadriven disease complications
- CACHE (ML4H'22 Best Paper)
 - Hypergraph modeling of medical codes
 - Counterfactual and factual reasoning for interpretability





EHR Networks + FedGraph

- Motivation: limited diversity in single studies (patient and disease)
- Scenarios:
 - Multi-modality data beyond EHR?
 - Disease phenotyping/subtyping?
 - Multi-task learning?
- Unique challenges:
 - Heterogeneous expressions: e.g., HGB (TKDE'20)
 - Higher-order interactions: e.g., HypEHR (AMIA'22)
 - Temporal clusters: e.g., DyHINE (WSDM'21), EvoNet (WSDM'21)



Suggestions/Questions

